China manufacturer ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded CHINAMFG

Product Description

ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded Plastic Parts

Product Description

Processing Technic CNC Maching, CNC Milling, CNC Turning, EDM, Stamping, Forging, Casting, Punching, Drilling, Broaching ect.
Material Available Aluminum: AL6061, AL6063, AL7075, AL2571, AL5052 ect.
Stainless Steel: SS303, SS304, SS316 etc.
Brass:HPb59-1, CuZn39Pb1/2/3, CuZn40, C36000, C37710 ect.
Bronze:C51000, C52100, C54400 ect.
Steel: Q235, 20#, 45# ect.
Carbon Fiber
Plastic: POM, PEEK, Nylon, Oiled Nylon
Application Consumer Electronics Products, Medical Devices, Sport Equipment, Motorcycle, Automibile, Aerial Photography, Model Aeroplane and Communication
Tolerance 0.1mm-0.01mm-0.001mm
Surface Finishes Anodizing, Hard Anodizing, Sand Blasted, Annealing, Polishing, Heat Treatment, Zinc-Plated, Chromed Plated
MOQ Prototype is Acceptable
Lead Time For sample 5-7 days, for mass productiong depend on the quantity
QC Equipment Three-D Machine, Projector, Vernier Caliper, Height Gage
Packing Poly bag, Carton, as per customer’s requirement
Trade terms EXW, FOB, CIF, CNF, as per customer’s request
Payment terms T/T, Paypal or Werstern Union is acceptable
Shipment terms By sea, by air, by experss is ok

Vertical CNC Machining Center 3-AXIS 17 sets
4-AXIS 7 sets
Turn-mill combination machining   4 sets
CNC turning Machine   6 sets
Grinding Machine   6 sets
Millng Machine   7 sets
Wire Cutting Machine EDM 4 sets
WEDM-MS 2 sets
WEDM 1 sets

Detailed Photos

More Products

Company Profile

Boyang Hardware is a manufacturer which concentrate on the CNC machining, CNC stamping, injection and die-casting for about 20years and we start exportation business in recent years.

 

Now we have over 60 sets advanced machine tools including CNC machining centers, cn lathes, milling machinese, CNC punching machines, etc. Our products are in high quality and reliable services to exported to many countries all over the world.

We serve all walks of life. In the past 20 years, we have completed more than 991, 571 manufacturing orders, and our engineers, designers, toolmakers and experts have succefully delivered parts, products and components to many industries around the world.

Whether your demand is as small dozens, as many as tens of thousands, or even more, BoYang is your partner worth consideering. We are always challenging the technical limits to provide our customers with the best quality on-time delivery guarantee, and the highest price-performance ratio. This is our mission.

If you have any needs, please feel to contact us. We will abjust the production according to your preferences, whether it is the release of a package order, timely delivery pr kanban. Need additional flexibility? We will keep your stock and safety stock in the agreed quantity.

We reduce your costs by pricing based on the estimated annual usage (EAU) quantity rather than the quantity issued. As your partner, we will be happy to expand capacity and operations to accommodate your growth!

FAQ

Q: Are you trading company or manufacturer?
A: We are factory.

Q: How long is your delivery time?
A: Usually,7-10days for sample,then 20-25days for mass production.If the goods need to open mould,then add about 25days for open mould.

Q: Do you accept small order?
A: Yes,we do.

Q: What extra service you can provide?
A: We can not only machine the parts,we also can do surface finishes,such as anodizing,plating,powder coating,paiting etc.We also assembly
the parts if necessory.

Q: Design drawing service
A: Our main business is to undertake drawing processing. For customers who don’t know much about drawing, we also provide design and drawing services. You need to provide samples or sketches.

Q: About drawing confidentiality
A: The processed samples and drawings are strictly confidential and will not be disclosed to anyone else.

Q: How do you guarantee your products?
A: Every product is manufactured in a certified workshop. We provide customers with certificates to ensure quality, and we can also provide samples for your testing before mass production.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: CE, RoHS, ISO9001
Standard: DIN, ASTM, GB, JIS, ANSI
Customized: Customized
Material: Aluminum
Application: Metal Processing Machinery Parts, Metal Casting Machinery
Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China manufacturer ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded CHINAMFG  China manufacturer ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded CHINAMFG
editor by CX 2024-03-23