China Good quality Custom Medcial Parts Injection Molded Parts Plastic Blow Molding Parts

Product Description

 

Business type Manufacturer,OEM/ODM and customization service supported
Main Product plastic molds/molds,blow moulds , prototypes, injection molding products,plastic products,metal stamping die parts,CNC processing, used molds,3D printing, regular /non-standard semi/full automatic injection molding machinery line ,etc
Mould Material P20/718/738/NAK80/S136/2738/2316/H13, aluminium,steel,stainless steel,brass,copper,bronze, etc.
Moud Precision +/-0.01mm
Mould Life 50K-5000K shots
Mould Cavity Single cavity, multi-cavity
Runner System Hot runner and cold runner
GateType Pinpoint Gate, Edge Gate, Sub Gate, Film Gate, Valve Gate, Open Gate, etc.
Equipment CNC,EDM, 3d coordinate measuring instrument,Machine,plastic machinery,etc plastic part
Plastic Material PS, ABS, PP, PVC, PMMA, PBT, PC, POM, PA66, PA6, PBT+GF, PC/ABS, PEEK, HDPE, TPU, PET, PPO,etc.
Surface Treatment Polishing,Painting,Chroming,Anodizing, Brushing, Silk Screening,Water Transfering, Laser Cutting,Leather Covering,Texture,Sanblasting,Gilding,UV Painting…
Pls Provide 2D, 3D, samples, or the size of the multi-angle pictures
Quality System ISO-9001:2015
Package Seaworthy exported wooden case

About us :
HONGTENG was established in 2016 and consists of 3 factories: XiaMen Hongteng Optoelectronics Technology Co., Ltd, HangZhou Hongteng Plastic Molding Co., Ltd. and Hongteng ZhiZhi (Xihu (West Lake) Dis.) Technology Co.ltd.

Over 200 staffs and a total area of around 25,000 square CHINAMFG ,equipped with more than 150 complete and advanced production equipment ,the company has a professional team of highly skilled design and engineering staffs to work on plastic injection mold ,blowing mold ,CNC Machining ,parts production ,mold Design ,assembling production line ,standard/non-standard customization of semi/auto-injection machinery production line ,and other flexible OEM/ODM service,etc, achieving the certificates of ISO9001 , ZheJiang Science and Technology Little Giant leader enterprise ,XiaMen Science and Technology Little Giant leader enterprise and many patents.

HongTeng gains good reputation and satisfaction from collaboration with PHILIPS,GE,OSRAM,MI,HUAWEI,CATL,NIO and many other customers ,serving various markets including Optoelectronic,Household &Industrial , Electronics & Telecommunications, Medical & Healthcare,Automotive,sports,standard/non-standard customization of semi/auto-injection molding machinery production line(Borunte Injection machine ,such as:Three-axis/Four-axis/Five-axis  servo Manipulator ;Two-axis/Four-axis/Six-axis Robot,Six-axis cooperative Robot,Lurking AGV,Composite mobile robot platform,Industrial Robot Series ,Casting Robot Series ,I.M.M Robot Series ,etc) ,and other flexible OEM/ODM service.

HongTeng aims to help clients optimize productivity and minimize manufacturing costs, strengthening the ability of OEM to compete effectively on a global basis.
welcome to contact us .

Our sample showroom:

Our certificates(ISO,Patents,Awards) honors:

Our tooling workshop:

Our injection workshop:

Our metal processing workshop:

Our R&D Department:

Our assembly workshop:

How to order :
Kindly contact or email us your inquiry or RFQS with details.One of our sales team would contact you ASAP and offer professional consultation on all your plastic molding needs and provide the best price .

FAQ:
1,What do we make?
We do mold design , plastic injection molds ,plastic products ,blowing molds ,blowing products ,Metal Stamping Die Parts,CNC Machining parts,Die Casting,standard/non-standard customization of semi/auto-injection molding machinery production line ,and other flexible OEM/ODM service.

2,Why choose us?
1.Over 20 years of experience. .
2.Around 25,000sqms production area
3.ISO9001 ,ZheJiang and XiaMen Science and Technology Little Giant leader enterprise and over 30 patent certificates
4.More than 150 complete and advanced production equipment
5.More than 30 senior engineers
6.One-stop service and technical support from design to mass production
7.Flexible solution could be customized as per client’s providing details to achieve their demands .
8.Strict quality check in prior to shipment for each order .

3,How can I get a quote?
Contact us.In order to quote you as soon as possible,kindly provide following information:
1.Detailed drawings(format:CAD/PDF/DWG/DXF/DXW/IGES/STEP etc.)
2.Material
3.Quantity  
4.Surface treatment
5.Mold life or your monthly production quantity
6.Any special packing or other requirements

4,Can I get a quote without drawings?
Sure, we appreciate to receive your samples, pictures or drafts with detailed dimensions for accurate quotation.

5,Can we CHINAMFG NDA?
Sure,we pay much attention to protect our customers’ privacy of drawings, We never disclose customers’ information to anyone else.

6,How long is the lead time for mold?
It depends on the mold’s size and complexity .Normally ,the lead time is 25-45 days .If the mold is very simple and not in big size ,we can work out with 15days.

7,How do you control the quality?
We want long term business relationship ,we understand quality is the first priority .
Always a pre-production sample before mass production;
Always final inspection before shipment.

8,How about the transportation?
You can choose any mode of transportation you want, sea delivery, air delivery or door to door express.We can also deliver the goods to your warehouse in China .

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Commodity, Hardware, Electronic, Car, Home Use, Household Appliances, Medical
Product Material: Stainless Steel
Method for Making Preforms: Tensile Type
Extrusion Blow Molding Mould Application Type: Machinery Manufacturing
Function: Abrasion Resistance
Certification: ISO, CE
Samples:
US$ 0.5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China Good quality Custom Medcial Parts Injection Molded Parts Plastic Blow Molding Parts  China Good quality Custom Medcial Parts Injection Molded Parts Plastic Blow Molding Parts
editor by CX 2024-02-09