China wholesaler ABS Plastic Injection Molding Terminal Box for E-Bike/Scooter/Bicycle injection mould parts and functions

Product Description

                               ABS Plastic Injection Molding Terminal Box for E-Bike/Scooter/Bicycle

 

Product Description

 

Product Name

Custom Plastic Molded Parts/ Injection Molding

Mold Shaping

plastic injection molding, injection mold

Size

Customer Customized

Product Material

Customer Customized,PP,PC,PS,PAG,POM,PE,PU,PVC,ABS,etc

Mold Material

P20, NAK80, H13, S45C, 718H,718 etc.

Color

Clear,Bule,Red and can be customized

Product design

According to the client’s drawing or samples

OEM /ODM

Available, we can provide OEM/ODM service.

Uasge

Automobiles, machinery, home appliance, electronic products, electric appliance, computers, sports equipment, Medical device, gifts, textile accessories, and more.

MOQ

Negotiable

Delivery Time

10-45 days based on the different products

Payment Terms

T/T, L/C, D/T, PAYPAL, WESTERN UNION and etc.

Product packaging

Product always with plastic bag(pearl-cotton package for heavy or fragile products), outside with new carton and packing belt, or according to customer’s requirement.

             
Detail of the perfect products

Free Design Service: Sent us a physical sample our team provided free part design work.We also provided free mold design work after contract signed by both sides.

Fast Mold: For simple and urgent mold,we promise can speed up to 15 days to finish mold and send out samples.

One Stop Service: Part Design, Prototyping. Mold Design,Production,Printing,Packing Material,Assembly,Packing And Shipping all
handled by our team

We can offer the full range of service from mold designing, making, plastic part molding to printing, assembly, package, and shipping arrangement.
In the service of plastic injection, we are more than just an injection molder.
We provide solutions to manufacturing from start to finish.
Our expertise enables us to provide clients with superior product by providing the
highest quality in design, development, and solutions for precision injection molding and related manufacturing.
We have over 10 years production experience.
      
Custom Plastic Injection Molding Services
Precision Plastic Injection Molding Services

We offers comprehensive custom plastic injection molding services to a wide range of industries.  From low volume work to high volume production runs, we have the expertise and facilities to meet our customers’ contract manufacturing needs. We offer 2 shot, sandwich and insert injection molding as well as micro and gas assist molding. We have both 10K and 100K clean room manufacturing facilities for those customers in the medical, pharmaceutical, food, beverage and electronics industries. Our comprehensive plastic injection molding abilities include machines with clamping forces from 18 to 3,000 tons, allowing us to produce nearly any plastic part including micro parts, thin-walled parts, and large components that require multiple shots.

We can source and mold any grade of material from typical commodity grade plastics, to engineering, functional, and structural grade materials in a variety of colors and formulations. In addition to injection molding, we offer many secondary services including sonic vibration, RF welding, hot stamping, etching, printing, plating, and packaging. Our manufacturing processes are highly automated, which allows us to run a precise and efficient production floor with minimal overhead costs. These capabilities allow us to provide fast and cost competitive manufacturing services to our customers without sacrificing precision and quality.

       
From CAD to Low, Medium, and High-volume production runs. Custom CZPT and plastic product contract manufacturing service. Rubber and Plastic parts are available in a variety of materials, hardness, and colors to match customer’s specific applications.                        
Molded rubber and plastic products such as plastic parts, rubber gaskets, joint, seals, grommets, compression seals, washers, grips, diaphragms, expansion joints, couplings, stopping seal elements, valve parts, rubber pulley lagging, rubber isolator parts, rubber wear pads, nozzle liners, cow and horse mats, flooring mats and rubber dog toys can be fabricated. Materials such as Buna-N, Buna-S, nitrile, butyl, natural rubber, neoprene, silicone, EPDM, SBR are used. Capabilities also include fast reverse engineering, prototyping, compression molding, injection molding, extrusion, and assembling. 


FAQ

 

FAQs:
Q1: Can I have a sample order?
A1: Yes, we accept sample order to test and check quality.
Q2: Do you have MOQ limit?
A2: Yes, we have MOQ limit for mass production, but it depends on model. Please contact us for details.
Q3: How about the lead time?
A3: Samples will takes 5-7 business days. Mass production will takes 25-30 days. It depends on quantity.
Q4: How about shipping and delivery time?
A4: Generally, Item will be shipped via Express, such as DHL, TNT, FedEx and UPS, delivery time is 3-7 business days.. Airline and sea shipping also available.       

If you are interested in any of our products, please send message to us through below approach!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS
Application: Household, Electronics, Automotive, Agricultural, Store Electrical Wire
Certification: ISO
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

Samples produced according to your requirements
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Injection molded partt

Factors to Consider When Converting a Design to Injection Molding

When considering injection molding for your design, there are several things you should consider. These factors include design, material selection, process, and reliability. In addition, you should consider the price of each part. The average cost per injection molded part is between $1 and $5. If you want to reduce your costs and improve your production cycle, look into converting your design to injection molding.

Design considerations for injection molded parts

Injection molded parts must meet certain design considerations to ensure quality and precision. Design considerations include proper material choice, process control, and tool design. In addition, designers must consider the tolerance ranges for the parts to be produced. These tolerances will differ from molder to molder, and designers should discuss their specific needs with their molders before they begin production. Designers must also consider possible revisions to the mold, such as making the part more or less tighter.
When designing injection molded parts, the designer should consider the thickness of each wall. This will minimize stresses that may arise due to uneven wall thickness. Parts with uneven wall thickness can develop sink marks, voids, and molded-in stresses. This can result in longer production time and increased cost. Moreover, irregular wall thickness can restrict material flow. To minimize these problems, designers should make the transitions between the different thicknesses smooth.
Another important design consideration is the use of bosses in injection molded parts. Bosses are typically used as points of assembly and attachment in injection molded parts. Bosses are cylindrical projections with holes for threaded inserts and other fastening hardware. Injection molded parts with bosses are generally able to accommodate multiple threaded inserts without stripping. These inserts are also durable and enable several cycles of assembly.
The thickness of the walls is another important consideration when designing injection molded parts. The thickness of walls will determine many key characteristics of the part. Careful consideration of this feature will prevent expensive mold modifications and delays. The nominal wall thickness should be determined based on the functional requirements of the part. Likewise, the minimum wall thickness should be set based on acceptable stress. If the walls are too thin, air will collect between them and compromise the functional performance of the part.

Material selection

Selecting the right material for your injection molded parts is an important part of the process. While there are many options, there are also many factors to consider. For instance, what kind of end product are you producing? Whether it’s a consumer part for your home or a complex part for the aerospace industry, you’ll need the right material for the job.
There are literally hundreds or thousands of types of plastic materials available for injection molding. One of the most common types is ABS, a polymer that has a high degree of structural strength and low cost. Another popular choice is polycarbonate, which offers excellent heat resistance and transparency. Alternatively, you can opt for Ultem, a high performance plastic that’s commonly used in medical and aerospace applications.
The process of designing plastic products involves a combination of art and science. The goal of this process is to create a high-quality product that meets the expectations of consumers. By doing this, you’ll reduce production costs and increase profits. It’s not an easy process, but it’s well worth the effort.
Injection molding is an efficient and versatile method of manufacturing medical devices. It can be done in high volumes and with high flexibility. In addition to this, it also offers a broad range of materials. This is important when your parts need to be made of different materials with unique physical properties. For example, if you’re producing toys, you’ll want to use Acrylonitrile Butadiene Styrene (ABS). ABS is also a great option for medical applications because it can withstand the high temperatures and pressures of medical environments.
When choosing plastic injection molding materials, keep in mind the weight and stiffness of the material. Some applications require hard plastics, while others require softer materials. In addition, the material’s flexibility will determine how much you can bend it.

Process

Injection molded parttInjection molding is a process in which plastic parts are formed by pressing melt into a mold. The process takes place in two stages. During the first step, the material is injected and heated, while the second stage is when the mold is opened and the part ejected. The part is then finished and ready for use.
The material used in injection molding is made from a variety of polymers. Common polymers include nylon, elastomers, and thermoplastics. Since 1995, the number of materials used in injection molding has increased by 750 percent. Some materials are newly developed while others are alloys of previously-developed materials. The selection of material primarily depends on the strength and function required by the final part. Also, the cost of the material is a critical factor.
The design of custom components for the molding process should be carried out by a skilled industrial designer. There are a number of design guidelines for plastic parts, which should be followed carefully to achieve high quality and dimensional accuracy. Failure to follow these guidelines can lead to undesirable results. Therefore, it is crucial to specify specific requirements for the parts before the process begins.
The process is reliable and highly repeatable, making it ideal for large-scale production. Injection molding also allows for the creation of multi-cavity injection mold parts, which can create several parts in one cycle. Other advantages of the injection molding process include low labor costs, minimal scrap losses, and low post-mold finishing costs.
Before beginning the full production run, technicians perform a trial run. In this test, they insert a small shot weight in the mould. Then, they apply a small holding pressure and increase the holding time until the gate freezes. Then, they weigh the part to check if it is right.

Reliability

Injection-molded parts are subject to a variety of defects. One of the most common is unwanted deformation. This may happen when the temperature of the mold is too high or there is not enough plastic injected into the mold. Another problem is millidiopter range distortion. This distortion is invisible to the naked eye, and cannot be detected by manual inspection. Regardless of the cause, preventing unwanted deformations is critical for the long-term performance of the part.
The process of creating a custom mould for a plastic component requires great skill. Creating a mould that is perfectly suited to the product is important, because a good mould is crucial in avoiding potential defects. Traditionally, this process relied on the skill of a toolmaker and trial-and-error methods. This slows down the process and increases the cost of production.
Another factor contributing to injection molded parts’ reliability is the high level of repeatability. Injection molding is ideal for high volume production, because parts are easily re-molded. However, the process can be prone to failure if there is no quality control. While most injection-molded parts will last for a long time, parts that are prone to wear will eventually fail.
Besides high level of consistency and reliability, injection-molded parts are also eco-friendly. Unlike other manufacturing methods, the injection molding process produces little to no waste. Much of the plastic left behind in the process can be recycled, making it a green alternative. Another benefit of this manufacturing method is automation, which helps reduce production costs. Overall, injection molding is a highly reliable and consistent product.
Injection molding requires precise measurements and a 3-D model. It is also important to check for wall uniformity and draft angles. Properly-designed parts can avoid deformations. If the wall thickness is too low, support ribs can be used. Proper draft angles are important to ensure that the part can be removed easily from the mold.

Cost

Injection molded parttThe cost of injection molded parts depends on many factors, including the complexity of the part and the mold design. Simpler designs, fewer CAD steps and simpler processes can help companies minimize costs. Another factor that affects the cost of injection molded parts is the geometry of the part. In general, complex geometries require more design work and tooling time. Additionally, thicker walls require more material than thin ones, which raises the cost of the part.
The amount of plastic used in the mold is also a key factor. Injection molding requires large quantities of material, so parts that are larger will require a larger mold. Larger parts are also more complex, so these require more detailed molds. A mold maker will be able to advise you on how to design your part to cut down on costs.
The next major factor affecting the cost of injection molded parts is the material of the mold. Most injection molds are made of steel, but the type and grade of steel used is important. Additionally, tight tolerances require molds with virtually wear-free interior cavities. Hence, higher-grade steel is required.
Another factor affecting the cost of injection molded parts is the price of mold tools. Depending on the size and complexity of the part, the cost of molding tools can vary from $10,000 to several hundred thousand dollars. Injection molding tooling is an integral part of the entire process and can add up to a significant portion of the overall cost of the part.
Draft angles are another factor that affects the cost of injection molded parts. A draft is an important design element as it allows for easy part separation and removal from the mold. Without a draft, it would be very difficult to remove a part after injection.
China wholesaler ABS Plastic Injection Molding Terminal Box for E-Bike/Scooter/Bicycle   injection mould parts and functionsChina wholesaler ABS Plastic Injection Molding Terminal Box for E-Bike/Scooter/Bicycle   injection mould parts and functions
editor by CX 2024-03-25

China manufacturer ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded CHINAMFG

Product Description

ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded Plastic Parts

Product Description

Processing Technic CNC Maching, CNC Milling, CNC Turning, EDM, Stamping, Forging, Casting, Punching, Drilling, Broaching ect.
Material Available Aluminum: AL6061, AL6063, AL7075, AL2571, AL5052 ect.
Stainless Steel: SS303, SS304, SS316 etc.
Brass:HPb59-1, CuZn39Pb1/2/3, CuZn40, C36000, C37710 ect.
Bronze:C51000, C52100, C54400 ect.
Steel: Q235, 20#, 45# ect.
Carbon Fiber
Plastic: POM, PEEK, Nylon, Oiled Nylon
Application Consumer Electronics Products, Medical Devices, Sport Equipment, Motorcycle, Automibile, Aerial Photography, Model Aeroplane and Communication
Tolerance 0.1mm-0.01mm-0.001mm
Surface Finishes Anodizing, Hard Anodizing, Sand Blasted, Annealing, Polishing, Heat Treatment, Zinc-Plated, Chromed Plated
MOQ Prototype is Acceptable
Lead Time For sample 5-7 days, for mass productiong depend on the quantity
QC Equipment Three-D Machine, Projector, Vernier Caliper, Height Gage
Packing Poly bag, Carton, as per customer’s requirement
Trade terms EXW, FOB, CIF, CNF, as per customer’s request
Payment terms T/T, Paypal or Werstern Union is acceptable
Shipment terms By sea, by air, by experss is ok

Vertical CNC Machining Center 3-AXIS 17 sets
4-AXIS 7 sets
Turn-mill combination machining   4 sets
CNC turning Machine   6 sets
Grinding Machine   6 sets
Millng Machine   7 sets
Wire Cutting Machine EDM 4 sets
WEDM-MS 2 sets
WEDM 1 sets

Detailed Photos

More Products

Company Profile

Boyang Hardware is a manufacturer which concentrate on the CNC machining, CNC stamping, injection and die-casting for about 20years and we start exportation business in recent years.

 

Now we have over 60 sets advanced machine tools including CNC machining centers, cn lathes, milling machinese, CNC punching machines, etc. Our products are in high quality and reliable services to exported to many countries all over the world.

We serve all walks of life. In the past 20 years, we have completed more than 991, 571 manufacturing orders, and our engineers, designers, toolmakers and experts have succefully delivered parts, products and components to many industries around the world.

Whether your demand is as small dozens, as many as tens of thousands, or even more, BoYang is your partner worth consideering. We are always challenging the technical limits to provide our customers with the best quality on-time delivery guarantee, and the highest price-performance ratio. This is our mission.

If you have any needs, please feel to contact us. We will abjust the production according to your preferences, whether it is the release of a package order, timely delivery pr kanban. Need additional flexibility? We will keep your stock and safety stock in the agreed quantity.

We reduce your costs by pricing based on the estimated annual usage (EAU) quantity rather than the quantity issued. As your partner, we will be happy to expand capacity and operations to accommodate your growth!

FAQ

Q: Are you trading company or manufacturer?
A: We are factory.

Q: How long is your delivery time?
A: Usually,7-10days for sample,then 20-25days for mass production.If the goods need to open mould,then add about 25days for open mould.

Q: Do you accept small order?
A: Yes,we do.

Q: What extra service you can provide?
A: We can not only machine the parts,we also can do surface finishes,such as anodizing,plating,powder coating,paiting etc.We also assembly
the parts if necessory.

Q: Design drawing service
A: Our main business is to undertake drawing processing. For customers who don’t know much about drawing, we also provide design and drawing services. You need to provide samples or sketches.

Q: About drawing confidentiality
A: The processed samples and drawings are strictly confidential and will not be disclosed to anyone else.

Q: How do you guarantee your products?
A: Every product is manufactured in a certified workshop. We provide customers with certificates to ensure quality, and we can also provide samples for your testing before mass production.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: CE, RoHS, ISO9001
Standard: DIN, ASTM, GB, JIS, ANSI
Customized: Customized
Material: Aluminum
Application: Metal Processing Machinery Parts, Metal Casting Machinery
Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China manufacturer ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded CHINAMFG  China manufacturer ODM Precision Bed Pump and Function Spare Molding ABS Injection Molded CHINAMFG
editor by CX 2024-03-23

China Hot selling Custom Molded CHINAMFG for Building Solutions, Plastic Injection Molding

Product Description

Workshop View

Mold Material S45C, S50C, P20, 718H, 738H, NAK80, S136, S136H
Mold Life Time Life time warrange,you pay mold cost once and we will be responsible for all quality production 
Product Material  PC, ABS,PP,PC+ABS,PA, HIPS, PVC, PE, PS, POM, Acrylic, PMMA,TPE,PET,GF filled PA etc
Surface Smooth, Glossy, Textured, Matte/Sandblasting
Color  Any Pantone or RAL color code is workable 
Drawing Format STEP/IGS/X_T,DWG,PDF
Secondary Service  Painting,Printing,Chrome Plating,Assembly etc.
Delivery Time 2 to 8 weeks depending on order size

Careful Working 

Example of What We Do

Company Introduction

Q: Are you a factory or trading company ?
A: We are a factory specializing in custom plastic injection molding parts,together with rubber parts and after-treatment of CHINAMFG such as painting,printing ,assembly etc .

Q:What info do you need if I want to get a quote for a custom plastic part ?
A: 3D drawing in IGS/STEP/X-T format is preferred .Otherwise  as long as other format can provide equivellent info ,it would be fine too ,such as CAD drawing with weight info provideded ,or samples sent to us for checking .
Also please state other related info such as what quantity you need,if there are any special requirements such as painting,printing,assembly etc .

Q:What material you can handle ?
A:We can make CHINAMFG in various kind of materials such as PC/PP/ABS/Nylon/PA6/PA66/TPE/PVC/PBT/Nylon with Glass Fiber/Polycarbonate with Glass Fiber/AS/PS/PMMA etc and subber parts in NBR/Silicone  etc .

Q:I have a custom plastic part to make ,I have the design but I am not familar with injection so I am not sure if this part may shrink or not working with injection,can you advise ?
A:YES,we have an engineering team who is not only familar with part design but also familar with injection feasiblity ,once we receive the drawing ,we will check the feasiblity for injection and potential problems in the design.For example,if the part is designed with unnecessary plastic which will not only add cost but also cause sink parts at the surface of the part,we will feedback you before proceeding .

Q:What colors can you do with my plastic part? 
A :We can make any color that is in Pantone and RAL color system .

Q:What’s your lead time for mold and for production ?
A:Usually we can send samples in 30-35 days from mold order . Production lead time is 2 to 8 weeks depending on order size .

Q:What’s the mold life gurantee ?
A:We provide lifetime gurantee .For example,usually a mold would start to age after like 500,000 shots ,but if quantity can reach this level ,we will make a new mold at our expense to keep the stable production going on . So you pay mold cost once and we will be responsible for all production from this model .

Q:Is mold our property after we pay it in full ?
A:Yes,mold is the customer’s property after the customer pays it in full .We only keep it well  in house to serve the customer’s production needs . The mold won’t be changed unless with customer’s permission .We will not produce from this mold for any third party unless we have the customer’s permission .

Q:What’s your delivery terms ?
A:It’s EXW price for air shipment and FOB HangZhou for sea shipment .HangZhou is our nearest port as we are located in HangZhou ,we can also coordinate to ship to other ports or locations if needed with negotiable price .

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Shaping Mode: Injection Mould
Surface Finish Process: Polishing/Sand Blasting/Texturing
Mould Cavity: Single or Mutlti Cavity
Plastic Material: PC/PP/ABS/PVC/Nylon/Pet/PA6/Nylon/TPE
Process Combination Type: Single Process or Multi Process
Application: Car, Household Appliances, Furniture, Commodity, Electronic, Home Use, Hardware
Customization:
Available

|

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China Hot selling Custom Molded CHINAMFG for Building Solutions, Plastic Injection Molding  China Hot selling Custom Molded CHINAMFG for Building Solutions, Plastic Injection Molding
editor by CX 2024-02-22

China OEM OEM Injection Molding Companies ABS Custom Made CHINAMFG Injection Molded

Product Description

Product Description

Product name  oem injection molding companies abs  custom made CHINAMFG  injection molded 
Product material ABS, PC, PP, PS, POM,PBT,PVC,PA6,PA66,PA66+30%GF,
PTFE,PC+ABS,TPE,etc
Color any colour available,will according customer’s request
Size as per your drawing or the sample
surface finish Color painting,Texture,Silk-printing,Vacuum coating,rubber coating, etc.
Logo accept customized
Application field Various plastic injection molded parts for various industrial and automotive applications
Mold Cavity Single or Multi-cavity
Mold life  5 shots
runner system hot runner and cold runner
package standard export carton packing ,or according your request.
lead time 
25-35 days for mould,plastic products according to quantity

Detailed Photos

  

Company Profile

 

 

Our company was founded in 2003.covers an area of 3000sqm,located in Xihu (West Lake) Dis. county,ZHangZhoug,China
we are manufacturer specialized in customized injection molding service and plastic extrusion profiles as customer’s design or sample.
We provide 1 stop Service including prototyping of preprodcution parts,tool design and build,parts production and assembly.We have professional engineering team over 10 years experience of plastic injection mold design and plastic injection molding process.
The products made by us widely used in household electrical appliances,gym equipment ,led lamps,automotive industry,packing industry and other fields.We can customize all kinds of Engineering plastics products according to our customers’ drawings or samples.

with Professional technicians and rich experience we have established CHINAMFG business relationships with customers spread worldwidely,Mainly in Europe,South America and North America.

We are looking CHINAMFG to forming successful business relationships with new clients in the near future.
Please feel free to contact us,We believe we will be your good business partner !
 

Certifications

 

 

FAQ

1. Are you a trading company or a manufacturer?

     We are a manufacturer.

2. What kind of trade terms can you do?

        EX-WORKS,FOB,CIF,DDP, DDU
 
3. Can I test my idea/component before committing to mould tool manufacture?

     Yes, we can make 3D samples for test functional evaluations.

4. Can you assure the quality ?
   
      Yes ,We have a professional quality inspection department,the mold is strickly tested before shipment.also send the plastic products sample to you before mass production.
  
5. Do you support OEM ?
 
    Yes, we can produce by technical drawings or samples. 

6.What type of plastic is best for my design/component?

    Materials selection depends on the application of your design and the environment in which it will function. We are very glad to  discuss the alternatives and give you  best suggestions .
 
7. How about your delivery time?
 
    Generally, it take 25 days for make mold.mass production depending on order qty.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS
Application: Medical, Household, Electronics, Automotive, Agricultural
Drawing Format: Dwg .Step .Igs
Mold Material: P20/S50c/H13/Nak80/718/738h/S136
Size: as Customer′s Design File
Logo: Accept Custom
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What is the impact of material selection on the performance and durability of injection molded parts?

The material selection for injection molded parts has a significant impact on their performance and durability. The choice of material influences various key factors, including mechanical properties, chemical resistance, thermal stability, dimensional stability, and overall part functionality. Here’s a detailed explanation of the impact of material selection on the performance and durability of injection molded parts:

Mechanical Properties:

The mechanical properties of the material directly affect the part’s strength, stiffness, impact resistance, and fatigue life. Different materials exhibit varying levels of tensile strength, flexural strength, modulus of elasticity, and elongation at break. The selection of a material with appropriate mechanical properties ensures that the injection molded part can withstand the applied forces, vibrations, and operational stresses without failure or deformation.

Chemical Resistance:

The material’s resistance to chemicals and solvents is crucial in applications where the part comes into contact with aggressive substances. Certain materials, such as engineering thermoplastics like ABS (Acrylonitrile Butadiene Styrene) or PEEK (Polyether Ether Ketone), exhibit excellent chemical resistance. Choosing a material with the appropriate chemical resistance ensures that the injection molded part maintains its integrity and functionality when exposed to specific chemicals or environments.

Thermal Stability:

The thermal stability of the material is essential in applications that involve exposure to high temperatures or thermal cycling. Different materials have varying melting points, glass transition temperatures, and heat deflection temperatures. Selecting a material with suitable thermal stability ensures that the injection molded part can withstand the anticipated temperature variations without dimensional changes, warping, or degradation of mechanical properties.

Dimensional Stability:

The dimensional stability of the material is critical in applications where precise tolerances and dimensional accuracy are required. Some materials, such as engineering thermoplastics or filled polymers, exhibit lower coefficients of thermal expansion, minimizing the part’s dimensional changes with temperature variations. Choosing a material with good dimensional stability helps ensure that the injection molded part maintains its shape, size, and critical dimensions over a wide range of operating temperatures.

Part Functionality:

The material selection directly impacts the functionality and performance of the injection molded part. Different materials offer unique properties that can be tailored to meet specific application requirements. For example, materials like polycarbonate (PC) or polypropylene (PP) offer excellent transparency, making them suitable for applications requiring optical clarity, while materials like polyamide (PA) or polyoxymethylene (POM) provide low friction and wear resistance, making them suitable for moving or sliding parts.

Cycle Time and Processability:

The material selection can also affect the cycle time and processability of injection molding. Different materials have different melt viscosities and flow characteristics, which influence the filling and cooling times during the molding process. Materials with good flow properties can fill complex mold geometries more easily, reducing the cycle time and improving productivity. It’s important to select a material that can be effectively processed using the available injection molding equipment and techniques.

Cost Considerations:

The material selection also impacts the overall cost of the injection molded part. Different materials have varying costs, and selecting the most suitable material involves considering factors such as material availability, tooling requirements, processing conditions, and the desired performance characteristics. Balancing the performance requirements with cost considerations is crucial in achieving an optimal material selection that meets the performance and durability requirements within the budget constraints.

Overall, material selection plays a critical role in determining the performance, durability, and functionality of injection molded parts. Careful consideration of mechanical properties, chemical resistance, thermal stability, dimensional stability, part functionality, cycle time, processability, and cost factors helps ensure that the chosen material meets the specific application requirements and delivers the desired performance and durability over the part’s intended service life.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

Can you describe the range of materials that can be used for injection molding?

Injection molding offers a wide range of materials that can be used to produce parts with diverse properties and characteristics. The choice of material depends on the specific requirements of the application, including mechanical properties, chemical resistance, thermal stability, transparency, and cost. Here’s a description of the range of materials commonly used for injection molding:

1. Thermoplastics:

Thermoplastics are the most commonly used materials in injection molding due to their versatility, ease of processing, and recyclability. Some commonly used thermoplastics include:

  • Polypropylene (PP): PP is a lightweight and flexible thermoplastic with excellent chemical resistance and low cost. It is widely used in automotive parts, packaging, consumer products, and medical devices.
  • Polyethylene (PE): PE is a versatile thermoplastic with excellent impact strength and chemical resistance. It is used in various applications, including packaging, pipes, automotive components, and toys.
  • Polystyrene (PS): PS is a rigid and transparent thermoplastic with good dimensional stability. It is commonly used in packaging, consumer goods, and disposable products.
  • Polycarbonate (PC): PC is a transparent and impact-resistant thermoplastic with high heat resistance. It finds applications in automotive parts, electronic components, and optical lenses.
  • Acrylonitrile Butadiene Styrene (ABS): ABS is a versatile thermoplastic with a good balance of strength, impact resistance, and heat resistance. It is commonly used in automotive parts, electronic enclosures, and consumer products.
  • Polyvinyl Chloride (PVC): PVC is a durable and flame-resistant thermoplastic with good chemical resistance. It is used in a wide range of applications, including construction, electrical insulation, and medical tubing.
  • Polyethylene Terephthalate (PET): PET is a strong and lightweight thermoplastic with excellent clarity and barrier properties. It is commonly used in packaging, beverage bottles, and textile fibers.

2. Engineering Plastics:

Engineering plastics offer enhanced mechanical properties, heat resistance, and dimensional stability compared to commodity thermoplastics. Some commonly used engineering plastics in injection molding include:

  • Polyamide (PA/Nylon): Nylon is a strong and durable engineering plastic with excellent wear resistance and low friction properties. It is used in automotive components, electrical connectors, and industrial applications.
  • Polycarbonate (PC): PC, mentioned earlier, is also considered an engineering plastic due to its exceptional impact resistance and high-temperature performance.
  • Polyoxymethylene (POM/Acetal): POM is a high-strength engineering plastic with low friction and excellent dimensional stability. It finds applications in gears, bearings, and precision mechanical components.
  • Polyphenylene Sulfide (PPS): PPS is a high-performance engineering plastic with excellent chemical resistance and thermal stability. It is used in electrical and electronic components, automotive parts, and industrial applications.
  • Polyetheretherketone (PEEK): PEEK is a high-performance engineering plastic with exceptional heat resistance, chemical resistance, and mechanical properties. It is commonly used in aerospace, medical, and industrial applications.

3. Thermosetting Plastics:

Thermosetting plastics undergo a chemical crosslinking process during molding, resulting in a rigid and heat-resistant material. Some commonly used thermosetting plastics in injection molding include:

  • Epoxy: Epoxy resins offer excellent chemical resistance and mechanical properties. They are commonly used in electrical components, adhesives, and coatings.
  • Phenolic: Phenolic resins are known for their excellent heat resistance and electrical insulation properties. They find applications in electrical switches, automotive parts, and consumer goods.
  • Urea-formaldehyde (UF) and Melamine-formaldehyde (MF): UF and MF resins are used for molding electrical components, kitchenware, and decorative laminates.

4. Elastomers:

Elastomers, also known as rubber-like materials, are used to produce flexible and elastic parts. They provide excellent resilience, durability, and sealing properties. Some commonly used elastomers in injection molding include:

  • Thermoplastic Elastomers (TPE): TPEs are a class of materials that combine the characteristics of rubber and plastic. They offer flexibility, good compression set, and ease of processing. TPEs find applications in automotive components, consumer products, and medical devices.
  • Silicone: Silicone elastomers provide excellent heat resistance, electrical insulation, and biocompatibility. They are commonly used in medical devices, automotive seals, and household products.
  • Styrene Butadiene Rubber (SBR): SBR is a synthetic elastomer with good abrasion resistance and low-temperature flexibility. It is used in tires, gaskets, and conveyor belts.
  • Ethylene Propylene Diene Monomer (EPDM): EPDM is a durable elastomer with excellent weather resistance and chemical resistance. It finds applications in automotive seals, weatherstripping, and roofing membranes.

5. Composites:

Injection molding can also be used to produce parts made of composite materials, which combine two or more different types of materials to achieve specific properties. Commonly used composite materials in injection molding include:

  • Glass-Fiber Reinforced Plastics (GFRP): GFRP combines glass fibers with thermoplastics or thermosetting resins to enhance mechanical strength, stiffness, and dimensional stability. It is used in automotive components, electrical enclosures, and sporting goods.
  • Carbon-Fiber Reinforced Plastics (CFRP): CFRP combines carbon fibers with thermosetting resins to produce parts with exceptional strength, stiffness, and lightweight properties. It is commonly used in aerospace, automotive, and high-performance sports equipment.
  • Metal-Filled Plastics: Metal-filled plastics incorporate metal particles or fibers into thermoplastics to achieve properties such as conductivity, electromagnetic shielding, or enhanced weight and feel. They are used in electrical connectors, automotive components, and consumer electronics.

These are just a few examples of the materials used in injection molding. There are numerous other specialized materials available, each with its own unique properties, such as flame retardancy, low friction, chemical resistance, or specific certifications for medical or food-contact applications. The selection of the material depends on the desired performance, cost considerations, and regulatory requirements of the specific application.

China OEM OEM Injection Molding Companies ABS Custom Made CHINAMFG Injection Molded  China OEM OEM Injection Molding Companies ABS Custom Made CHINAMFG Injection Molded
editor by CX 2024-02-21

China supplier OEM Medical Electronic Auto Toy ABS 3D Print Injection Mold Mould Molded Molding Custom Plastic Inject Parts

Product Description

HangZhou Yida industry and Trade Co., Ltd. is a professional manufacturer of injection molding plastic products and moulds
processing. Founded in 1999,The products range covers Construction, Home Appliances, Foods, Machinery, Vehicles & Accessories, Daily Consumer Goods, Sports & Fitness, Electronic Components & Accessories, Tools, Fishery, Packaging & Printing etc.

 

Rapid tooling
Fast and cost-effective process to create aluminum or steel injection molds for quick turn injection molding. Ideal for rapid prototyping needs or validating product concept for production.

Overmolding

Overmolding is a unique injection molding process that combines 2 or more components together. It is the best practice for the plastic manufacturing of multi-color and multi-layers products.

Insert molding

Insert molding is a custom injection molding process that encapsulates components in a plastic part. It is most commonly used for
prototype injection molding designs with threads and holes.

 

Liquid Silicone Rubber injection molding

Liquid silicone rubber (LSR) is a flexible prototype injection molding process that produces elastic, durable parts. Get custom
prototypes and production parts from 15 days.

 

Mould Design Process
Step 1: Analyze the product drawings
Step 2:Create the Design for Manufacturability (DFM) report
Step 3: Make the mould flow analysis
Step 4: Design tooling drawings
Step 5: Mould making

Once the mould making is finished, we’ll make several pieces of pre-production samples for test, if the dimensions are correct,then we will send the samples to customers for final confirmation. If the test failed, we will modify the mould or adjust the molding parameter to make new samples, and test it again. Once the samples are approval by customers, we will purchase the raw material and making quality inspection. Then mixing material, molding and trimming, we will make many times of inspection during the production. Finally we will arrange the assembly and packing. After whole order is ready, we will send the packing list to customer to arrange the shipment.

Mold Material S45C, S50C, P20, 718H, 738H, NAK80, S136, S136H
Mold Life Time 300K times
Product Material ABS+PC, PP, PC, ABS, PA, HIPS, PVC, PE, PS, POM, Acrylic,
Surface Smooth, glossy, textured, matte
Size

1) According to customers’ drawings

2) According to customers’ samples

Drawing Format step, dwg, igs, pdf
Process Injection Plastic Modling
Payment Term T/T, L/C, Trade Assurance
Place of Origin China
Color Customized

FAQ

Q1:Where can I get product&price information? 

A1:Send us e-mail , we will contact you as we receive your mail.

 

Q2: How soon can I get samples? 

A2: Depending on your specific project, it usually takes 10 to 20 days.

 

Q3:How to enjoy the OEM services?

A3:Usually, base on your design drawings or original samples, we give some technical proposals and a quotation to you, after your agreement, we produce for you.

 

Q4:Can you make machining parts based on our samples? 

A4:Yes, we can make measurement based on your samples to make drawings for machining parts making.

 

Q5: Is it possible to know how are my products going on without visiting your company?

A5: We will offer a detailed production schedule and send weekly reports with digital pictures and videos which show the machining progress.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: PP
Application: Medical, Household, Electronics, Automotive, Agricultural, Plastic
Certification: ISO
Mold Material: S45c, S50c, P20, 718h, 738h, Nak80, S136, S136h
Mold Life Time: 300K Times
Product Material: ABS+PC, PP, PC, ABS, PA, HIPS, PVC, PE, PS, POM
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide examples of products or equipment that incorporate injection molded parts?

Yes, there are numerous products and equipment across various industries that incorporate injection molded parts. Injection molding is a widely used manufacturing process that enables the production of complex and precise components. Here are some examples of products and equipment that commonly incorporate injection molded parts:

1. Electronics and Consumer Devices:

– Mobile phones and smartphones: These devices typically have injection molded plastic casings, buttons, and connectors.

– Computers and laptops: Injection molded parts are used for computer cases, keyboard keys, connectors, and peripheral device housings.

– Appliances: Products such as televisions, refrigerators, washing machines, and vacuum cleaners often incorporate injection molded components for their casings, handles, buttons, and control panels.

– Audio equipment: Speakers, headphones, and audio players often use injection molded parts for their enclosures and buttons.

2. Automotive Industry:

– Cars and Trucks: Injection molded parts are extensively used in the automotive industry. Examples include dashboard panels, door handles, interior trim, steering wheel components, air vents, and various under-the-hood components.

– Motorcycle and Bicycle Parts: Many motorcycle and bicycle components are manufactured using injection molding, including fairings, handle grips, footrests, instrument panels, and engine covers.

– Automotive Lighting: Headlights, taillights, turn signals, and other automotive lighting components often incorporate injection molded lenses, housings, and mounts.

3. Medical and Healthcare:

– Medical Devices: Injection molding is widely used in the production of medical devices such as syringes, IV components, surgical instruments, respiratory masks, implantable devices, and diagnostic equipment.

– Laboratory Equipment: Many laboratory consumables, such as test tubes, petri dishes, pipette tips, and specimen containers, are manufactured using injection molding.

– Dental Equipment: Dental tools, orthodontic devices, and dental prosthetics often incorporate injection molded components.

4. Packaging Industry:

– Bottles and Containers: Plastic bottles and containers used for food, beverages, personal care products, and household chemicals are commonly produced using injection molding.

– Caps and Closures: Injection molded caps and closures are widely used in the packaging industry for bottles, jars, and tubes.

– Thin-Walled Packaging: Injection molding is used to produce thin-walled packaging products such as trays, cups, and lids for food and other consumer goods.

5. Toys and Games:

– Many toys and games incorporate injection molded parts. Examples include action figures, building blocks, puzzles, board game components, and remote-controlled vehicles.

6. Industrial Equipment and Tools:

– Industrial machinery: Injection molded parts are used in various industrial equipment and machinery, including components for manufacturing machinery, conveyor systems, and robotic systems.

– Power tools: Many components of power tools, such as housing, handles, switches, and guards, are manufactured using injection molding.

– Hand tools: Injection molded parts are incorporated into a wide range of hand tools, including screwdrivers, wrenches, pliers, and cutting tools.

These are just a few examples of products and equipment that incorporate injection molded parts. The versatility of injection molding allows for its application in a wide range of industries, enabling the production of high-quality components with complex geometries and precise specifications.

Can you describe the various post-molding processes, such as assembly or secondary operations, for injection molded parts?

Post-molding processes play a crucial role in the production of injection molded parts. These processes include assembly and secondary operations that are performed after the initial molding stage. Here’s a detailed explanation of the various post-molding processes for injection molded parts:

1. Assembly:

Assembly involves joining multiple injection molded parts together to create a finished product or sub-assembly. The assembly process can include various techniques such as mechanical fastening (screws, clips, or snaps), adhesive bonding, ultrasonic welding, heat staking, or solvent welding. Assembly ensures that the individual molded parts are securely combined to achieve the desired functionality and structural integrity of the final product.

2. Surface Finishing:

Surface finishing processes are performed to enhance the appearance, texture, and functionality of injection molded parts. Common surface finishing techniques include painting, printing (such as pad printing or screen printing), hot stamping, laser etching, or applying specialized coatings. These processes can add decorative features, branding elements, or improve the surface properties of the parts, such as scratch resistance or UV protection.

3. Machining or Trimming:

In some cases, injection molded parts may require additional machining or trimming to achieve the desired final dimensions or remove excess material. This can involve processes such as CNC milling, drilling, reaming, or turning. Machining or trimming is often necessary when tight tolerances, specific geometries, or critical functional features cannot be achieved solely through the injection molding process.

4. Welding or Joining:

Welding or joining processes are used to fuse or bond injection molded parts together. Common welding techniques for plastic parts include ultrasonic welding, hot plate welding, vibration welding, or laser welding. These processes create strong and reliable joints between the molded parts, ensuring structural integrity and functionality in the final product.

5. Insertion of Inserts:

Insertion involves placing metal or plastic inserts into the mold cavity before the injection molding process. These inserts can provide additional strength, reinforce threaded connections, or serve as mounting points for other components. Inserts can be placed manually or using automated equipment, and they become permanently embedded in the molded parts during the molding process.

6. Overmolding or Two-Shot Molding:

Overmolding or two-shot molding processes allow for the creation of injection molded parts with multiple layers or materials. In overmolding, a second material is molded over a pre-existing substrate, providing enhanced functionality, aesthetics, or grip. Two-shot molding involves injecting two different materials into different sections of the mold to create a single part with multiple colors or materials. These processes enable the integration of multiple materials or components into a single injection molded part.

7. Deflashing or Deburring:

Deflashing or deburring processes involve removing excess flash or burrs that may be present on the molded parts after the injection molding process. Flash refers to the excess material that extends beyond the parting line of the mold, while burrs are small protrusions or rough edges caused by the mold features. Deflashing or deburring ensures that the molded parts have smooth edges and surfaces, improving their appearance, functionality, and safety.

8. Inspection and Quality Control:

Inspection and quality control processes are performed to ensure that the injection molded parts meet the required specifications and quality standards. This can involve visual inspection, dimensional measurement, functional testing, or other specialized testing methods. Inspection and quality control processes help identify any defects, inconsistencies, or deviations that may require rework or rejection of the parts, ensuring that only high-quality parts are used in the final product or assembly.

9. Packaging and Labeling:

Once the post-molding processes are complete, the injection molded parts are typically packaged and labeled for storage, transportation, or distribution. Packaging can include individual part packaging, bulk packaging, or custom packaging based on specific requirements. Labeling may involve adding product identification, barcodes, or instructions for proper handling or usage.

These post-molding processes are vital in achieving the desired functionality, appearance, and quality of injection molded parts. They enable the integration of multiple components, surface finishing, dimensional accuracy, and assembly of the final products or sub-assemblies.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China supplier OEM Medical Electronic Auto Toy ABS 3D Print Injection Mold Mould Molded Molding Custom Plastic Inject Parts  China supplier OEM Medical Electronic Auto Toy ABS 3D Print Injection Mold Mould Molded Molding Custom Plastic Inject Parts
editor by CX 2024-02-21

China supplier OEM Injection Molding Companies ABS Custom Made CHINAMFG Injection Molded

Product Description

Product Description

Product name  oem injection molding companies abs  custom made CHINAMFG  injection molded 
Product material ABS, PC, PP, PS, POM,PBT,PVC,PA6,PA66,PA66+30%GF,
PTFE,PC+ABS,TPE,etc
Color any colour available,will according customer’s request
Size as per your drawing or the sample
surface finish Color painting,Texture,Silk-printing,Vacuum coating,rubber coating, etc.
Logo accept customized
Application field Various plastic injection molded parts for various industrial and automotive applications
Mold Cavity Single or Multi-cavity
Mold life  5 shots
runner system hot runner and cold runner
package standard export carton packing ,or according your request.
lead time 
25-35 days for mould,plastic products according to quantity

Detailed Photos

  

Company Profile

 

 

Our company was founded in 2003.covers an area of 3000sqm,located in Xihu (West Lake) Dis. county,ZHangZhoug,China
we are manufacturer specialized in customized injection molding service and plastic extrusion profiles as customer’s design or sample.
We provide 1 stop Service including prototyping of preprodcution parts,tool design and build,parts production and assembly.We have professional engineering team over 10 years experience of plastic injection mold design and plastic injection molding process.
The products made by us widely used in household electrical appliances,gym equipment ,led lamps,automotive industry,packing industry and other fields.We can customize all kinds of Engineering plastics products according to our customers’ drawings or samples.

with Professional technicians and rich experience we have established CHINAMFG business relationships with customers spread worldwidely,Mainly in Europe,South America and North America.

We are looking CHINAMFG to forming successful business relationships with new clients in the near future.
Please feel free to contact us,We believe we will be your good business partner !
 

Certifications

 

 

FAQ

1. Are you a trading company or a manufacturer?

     We are a manufacturer.

2. What kind of trade terms can you do?

        EX-WORKS,FOB,CIF,DDP, DDU
 
3. Can I test my idea/component before committing to mould tool manufacture?

     Yes, we can make 3D samples for test functional evaluations.

4. Can you assure the quality ?
   
      Yes ,We have a professional quality inspection department,the mold is strickly tested before shipment.also send the plastic products sample to you before mass production.
  
5. Do you support OEM ?
 
    Yes, we can produce by technical drawings or samples. 

6.What type of plastic is best for my design/component?

    Materials selection depends on the application of your design and the environment in which it will function. We are very glad to  discuss the alternatives and give you  best suggestions .
 
7. How about your delivery time?
 
    Generally, it take 25 days for make mold.mass production depending on order qty.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS
Application: Medical, Household, Electronics, Automotive, Agricultural
Drawing Format: Dwg .Step .Igs
Mold Material: P20/S50c/H13/Nak80/718/738h/S136
Size: as Customer′s Design File
Logo: Accept Custom
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What factors influence the design and tooling of injection molded parts for specific applications?

Several factors play a crucial role in influencing the design and tooling of injection molded parts for specific applications. The following are key factors that need to be considered:

1. Functionality and Performance Requirements:

The intended functionality and performance requirements of the part heavily influence its design and tooling. Factors such as strength, durability, dimensional accuracy, chemical resistance, and temperature resistance are essential considerations. The part’s design must be optimized to meet these requirements while ensuring proper functionality and performance in its intended application.

2. Material Selection:

The choice of material for injection molding depends on the specific application and its requirements. Different materials have varying properties, such as strength, flexibility, heat resistance, chemical resistance, and electrical conductivity. The material selection influences the design and tooling considerations, as the part’s geometry and structure must be compatible with the selected material’s properties.

3. Part Complexity and Geometry:

The complexity and geometry of the part significantly impact its design and tooling. Complex parts with intricate features, undercuts, thin walls, or varying thicknesses may require specialized tooling and mold designs. The part’s geometry must be carefully considered to ensure proper mold filling, cooling, ejection, and dimensional stability during the injection molding process.

4. Manufacturing Cost and Efficiency:

The design and tooling of injection molded parts are also influenced by manufacturing cost and efficiency considerations. Design features that reduce material usage, minimize cycle time, and optimize the use of the injection molding machine can help lower production costs. Efficient tooling designs, such as multi-cavity molds or family molds, can increase productivity and reduce per-part costs.

5. Moldability and Mold Design:

The moldability of the part, including factors like draft angles, wall thickness, and gate location, affects the mold design. The part should be designed to facilitate proper flow of molten plastic during injection, ensure uniform cooling, and allow for easy part ejection. The tooling design, such as the number of cavities, gate design, and cooling system, is influenced by the part’s moldability requirements.

6. Regulatory and Industry Standards:

Specific applications, especially in industries like automotive, aerospace, and medical, may have regulatory and industry standards that influence the design and tooling considerations. Compliance with these standards regarding materials, dimensions, safety, and performance requirements is essential and may impact the design choices and tooling specifications.

7. Assembly and Integration:

If the injection molded part needs to be assembled or integrated with other components or systems, the design and tooling must consider the assembly process and requirements. Features such as snap fits, interlocking mechanisms, or specific mating surfacescan be incorporated into the part’s design to facilitate efficient assembly and integration.

8. Aesthetics and Branding:

In consumer products and certain industries, the aesthetic appearance and branding of the part may be crucial. Design considerations such as surface finish, texture, color, and the inclusion of logos or branding elements may be important factors that influence the design and tooling decisions.

Overall, the design and tooling of injection molded parts for specific applications are influenced by a combination of functional requirements, material considerations, part complexity, manufacturing cost and efficiency, moldability, regulatory standards, assembly requirements, and aesthetic factors. It is essential to carefully consider these factors to achieve optimal part design and successful injection molding production.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China supplier OEM Injection Molding Companies ABS Custom Made CHINAMFG Injection Molded  China supplier OEM Injection Molding Companies ABS Custom Made CHINAMFG Injection Molded
editor by CX 2024-02-20

China Custom OEM Medical Electronic Auto Toy ABS 3D Print Injection Mold Mould Molded Molding Custom Plastic Inject Parts

Product Description

HangZhou Yida industry and Trade Co., Ltd. is a professional manufacturer of injection molding plastic products and moulds
processing. Founded in 1999,The products range covers Construction, Home Appliances, Foods, Machinery, Vehicles & Accessories, Daily Consumer Goods, Sports & Fitness, Electronic Components & Accessories, Tools, Fishery, Packaging & Printing etc.

 

Rapid tooling
Fast and cost-effective process to create aluminum or steel injection molds for quick turn injection molding. Ideal for rapid prototyping needs or validating product concept for production.

Overmolding

Overmolding is a unique injection molding process that combines 2 or more components together. It is the best practice for the plastic manufacturing of multi-color and multi-layers products.

Insert molding

Insert molding is a custom injection molding process that encapsulates components in a plastic part. It is most commonly used for
prototype injection molding designs with threads and holes.

 

Liquid Silicone Rubber injection molding

Liquid silicone rubber (LSR) is a flexible prototype injection molding process that produces elastic, durable parts. Get custom
prototypes and production parts from 15 days.

 

Mould Design Process
Step 1: Analyze the product drawings
Step 2:Create the Design for Manufacturability (DFM) report
Step 3: Make the mould flow analysis
Step 4: Design tooling drawings
Step 5: Mould making

Once the mould making is finished, we’ll make several pieces of pre-production samples for test, if the dimensions are correct,then we will send the samples to customers for final confirmation. If the test failed, we will modify the mould or adjust the molding parameter to make new samples, and test it again. Once the samples are approval by customers, we will purchase the raw material and making quality inspection. Then mixing material, molding and trimming, we will make many times of inspection during the production. Finally we will arrange the assembly and packing. After whole order is ready, we will send the packing list to customer to arrange the shipment.

Mold Material S45C, S50C, P20, 718H, 738H, NAK80, S136, S136H
Mold Life Time 300K times
Product Material ABS+PC, PP, PC, ABS, PA, HIPS, PVC, PE, PS, POM, Acrylic,
Surface Smooth, glossy, textured, matte
Size

1) According to customers’ drawings

2) According to customers’ samples

Drawing Format step, dwg, igs, pdf
Process Injection Plastic Modling
Payment Term T/T, L/C, Trade Assurance
Place of Origin China
Color Customized

FAQ

Q1:Where can I get product&price information? 

A1:Send us e-mail , we will contact you as we receive your mail.

 

Q2: How soon can I get samples? 

A2: Depending on your specific project, it usually takes 10 to 20 days.

 

Q3:How to enjoy the OEM services?

A3:Usually, base on your design drawings or original samples, we give some technical proposals and a quotation to you, after your agreement, we produce for you.

 

Q4:Can you make machining parts based on our samples? 

A4:Yes, we can make measurement based on your samples to make drawings for machining parts making.

 

Q5: Is it possible to know how are my products going on without visiting your company?

A5: We will offer a detailed production schedule and send weekly reports with digital pictures and videos which show the machining progress.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: PP
Application: Medical, Household, Electronics, Automotive, Agricultural, Plastic
Certification: ISO
Mold Material: S45c, S50c, P20, 718h, 738h, Nak80, S136, S136h
Mold Life Time: 300K Times
Product Material: ABS+PC, PP, PC, ABS, PA, HIPS, PVC, PE, PS, POM
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Custom OEM Medical Electronic Auto Toy ABS 3D Print Injection Mold Mould Molded Molding Custom Plastic Inject Parts  China Custom OEM Medical Electronic Auto Toy ABS 3D Print Injection Mold Mould Molded Molding Custom Plastic Inject Parts
editor by CX 2024-02-20

China supplier OEM New Design Injection Molding Service Custom ABS Injection Molded CHINAMFG

Product Description

Product Description
 

Product name  OEM New Design Injection Molding Service Custom ABS Injection Molded Plastic Parts
Product material ABS, PC, PP, PS, POM,PBT,PVC,PA6,PA66,PA66+30%GF,
PTFE,PC+ABS,TPE,etc
Color any colour available,will according customer’s request
Size as per your drawing or the sample
Tolerance +/-0.1MM
surface finish Color painting,Texture,Silk-printing,Vacuum coating,rubber coating, etc.
Logo accept customized
Application field Various plastic injection molded parts for various industrial and automotive applications
MOQ Negotiable
Mold Cavity Single or Multi-cavity
Mold life  5 shots
runner system hot runner and cold runner
package standard export carton packing ,or according your request.
Payment terms For mold: 50% advanceT/T payment, balance will be after you confirm our samples; For production: 30%T/T, balance will be after received our B/L copy
lead time 
25-35 days for mould,mass production according the order quantity

Detailed products  

    

Production Procedure 

Company Profile

Our company was founded in 2003.covers an area of 3000sqm,located in Xihu (West Lake) Dis. county,ZHangZhoug,China
we are manufacturer specialized in customized injection molding service and plastic extrusion profiles as customer’s design or sample.
We provide 1 stop Service including prototyping of preprodcution parts,tool design and build,parts production and assembly.We have professional engineering team over 10 years experience of plastic injection mold design and plastic injection molding process.
The products made by us widely used in household electrical appliances,gym equipment ,led lamps,automotive industry,packing industry and other fields.We can customize all kinds of Engineering plastics products according to our customers’ drawings or samples.

with Professional technicians and rich experience we have established CHINAMFG business relationships with customers spread worldwidely,Mainly in Europe,South America and North America.

We are looking CHINAMFG to forming successful business relationships with new clients in the near future.
Please feel free to contact us,We believe we will be your good business partner !
 

FAQ

Q1. Are you a trading company or a manufacturer?

     We are a manufacturer.

Q2. What kind of trade terms can you do?

        EX-WORKS,FOB,CIF,DDP, DDU
 
Q3. Can I test my idea/component before committing to mould tool manufacture?

     Yes, we can make 3D samples for test functional evaluations.

Q4. Can you assure the quality ?
   
      Yes ,We have a professional quality inspection department,pre production  sample  before mass production,final inspection before shipment.
  
Q5. Do you support OEM ?
 
    Yes, we can produce by technical drawings or samples. 

Q6.What type of plastic is best for my design/component?

   Materials selection depends on the application of your design and the environment in which it will function. We are very glad to  discuss the alternatives and give you  best suggestions .
 
Q7. How about your delivery time?
 
   Generally, it take 25 days for make mold.mass production depending on order qty.

Q8.How to slove the quality problem after sale?

please take photos&video of the problem and send us,we will make a solution for you within 24hours after we confirm the problem.
we will be responsible for our products quality.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS/PP/PA6/PC/POM
Application: Medical, Household, Electronics, Automotive, Agricultural
Drawing Format: Dwg .Step .Igs
Mold Material: P20/S50c/H13/Nak80/718/738h/S136
Size: as Customer′s Design File
Logo: Accept Custom
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

What eco-friendly or sustainable practices are associated with injection molding processes and materials?

Eco-friendly and sustainable practices are increasingly important in the field of injection molding. Many advancements have been made to minimize the environmental impact of both the processes and materials used in injection molding. Here’s a detailed explanation of the eco-friendly and sustainable practices associated with injection molding processes and materials:

1. Material Selection:

The choice of materials can significantly impact the environmental footprint of injection molding. Selecting eco-friendly materials is a crucial practice. Some sustainable material options include biodegradable or compostable polymers, such as PLA or PHA, which can reduce the environmental impact of the end product. Additionally, using recycled or bio-based materials instead of virgin plastics can help to conserve resources and reduce waste.

2. Recycling:

Implementing recycling practices is an essential aspect of sustainable injection molding. Recycling involves collecting, processing, and reusing plastic waste generated during the injection molding process. Both post-industrial and post-consumer plastic waste can be recycled and incorporated into new products, reducing the demand for virgin materials and minimizing landfill waste.

3. Energy Efficiency:

Efficient energy usage is a key factor in sustainable injection molding. Optimizing the energy consumption of machines, heating and cooling systems, and auxiliary equipment can significantly reduce the carbon footprint of the manufacturing process. Employing energy-efficient technologies, such as servo-driven machines or advanced heating and cooling systems, can help achieve energy savings and lower environmental impact.

4. Process Optimization:

Process optimization is another sustainable practice in injection molding. By fine-tuning process parameters, optimizing cycle times, and reducing material waste, manufacturers can minimize resource consumption and improve overall process efficiency. Advanced process control systems, real-time monitoring, and automation technologies can assist in achieving these optimization goals.

5. Waste Reduction:

Efforts to reduce waste are integral to sustainable injection molding practices. Minimizing material waste through improved design, better material handling techniques, and efficient mold design can positively impact the environment. Furthermore, implementing lean manufacturing principles and adopting waste management strategies, such as regrinding scrap materials or reusing purging compounds, can contribute to waste reduction and resource conservation.

6. Clean Production:

Adopting clean production practices helps mitigate the environmental impact of injection molding. This includes reducing emissions, controlling air and water pollution, and implementing effective waste management systems. Employing pollution control technologies, such as filters and treatment systems, can help ensure that the manufacturing process operates in an environmentally responsible manner.

7. Life Cycle Assessment:

Conducting a life cycle assessment (LCA) of the injection molded products can provide insights into their overall environmental impact. LCA evaluates the environmental impact of a product throughout its entire life cycle, from raw material extraction to disposal. By considering factors such as material sourcing, production, use, and end-of-life options, manufacturers can identify areas for improvement and make informed decisions to reduce the environmental footprint of their products.

8. Collaboration and Certification:

Collaboration among stakeholders, including manufacturers, suppliers, and customers, is crucial for fostering sustainable practices in injection molding. Sharing knowledge, best practices, and sustainability initiatives can drive eco-friendly innovations. Additionally, obtaining certifications such as ISO 14001 (Environmental Management System) or partnering with organizations that promote sustainable manufacturing can demonstrate a commitment to environmental responsibility and sustainability.

9. Product Design for Sustainability:

Designing products with sustainability in mind is an important aspect of eco-friendly injection molding practices. By considering factors such as material selection, recyclability, energy efficiency, and end-of-life options during the design phase, manufacturers can create products that are environmentally responsible and promote a circular economy.

Implementing these eco-friendly and sustainable practices in injection molding processes and materials can help reduce the environmental impact of manufacturing, conserve resources, minimize waste, and contribute to a more sustainable future.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China supplier OEM New Design Injection Molding Service Custom ABS Injection Molded CHINAMFG  China supplier OEM New Design Injection Molding Service Custom ABS Injection Molded CHINAMFG
editor by CX 2024-02-19

China Standard High Precision Peek PSU PPS Injection Molded Plastic Products Custom Plastic Injection Molding Parts

Product Description

HangZhou Yida industry and Trade Co., Ltd. is a professional manufacturer of injection molding plastic products and moulds
processing. Founded in 1999,The products range covers Construction, Home Appliances, Foods, Machinery, Vehicles & Accessories, Daily Consumer Goods, Sports & Fitness, Electronic Components & Accessories, Tools, Fishery, Packaging & Printing etc.

 

Rapid tooling
Fast and cost-effective process to create aluminum or steel injection molds for quick turn injection molding. Ideal for rapid prototyping needs or validating product concept for production.

Overmolding

Overmolding is a unique injection molding process that combines 2 or more components together. It is the best practice for the plastic manufacturing of multi-color and multi-layers products.

Insert molding

Insert molding is a custom injection molding process that encapsulates components in a plastic part. It is most commonly used for
prototype injection molding designs with threads and holes.

 

Liquid Silicone Rubber injection molding

Liquid silicone rubber (LSR) is a flexible prototype injection molding process that produces elastic, durable parts. Get custom
prototypes and production parts from 15 days.

 

Mould Design Process
Step 1: Analyze the product drawings
Step 2:Create the Design for Manufacturability (DFM) report
Step 3: Make the mould flow analysis
Step 4: Design tooling drawings
Step 5: Mould making

Once the mould making is finished, we’ll make several pieces of pre-production samples for test, if the dimensions are correct,then we will send the samples to customers for final confirmation. If the test failed, we will modify the mould or adjust the molding parameter to make new samples, and test it again. Once the samples are approval by customers, we will purchase the raw material and making quality inspection. Then mixing material, molding and trimming, we will make many times of inspection during the production. Finally we will arrange the assembly and packing. After whole order is ready, we will send the packing list to customer to arrange the shipment.

Mold Material S45C, S50C, P20, 718H, 738H, NAK80, S136, S136H
Mold Life Time 300K times
Product Material ABS+PC, PP, PC, ABS, PA, HIPS, PVC, PE, PS, POM, Acrylic,
Surface Smooth, glossy, textured, matte
Size

1) According to customers’ drawings

2) According to customers’ samples

Drawing Format step, dwg, igs, pdf
Process Injection Plastic Modling
Payment Term T/T, L/C, Trade Assurance
Place of Origin China
Color Customized

FAQ

Q1:Where can I get product&price information? 

A1:Send us e-mail , we will contact you as we receive your mail.

 

Q2: How soon can I get samples? 

A2: Depending on your specific project, it usually takes 10 to 20 days.

 

Q3:How to enjoy the OEM services?

A3:Usually, base on your design drawings or original samples, we give some technical proposals and a quotation to you, after your agreement, we produce for you.

 

Q4:Can you make machining parts based on our samples? 

A4:Yes, we can make measurement based on your samples to make drawings for machining parts making.

 

Q5: Is it possible to know how are my products going on without visiting your company?

A5: We will offer a detailed production schedule and send weekly reports with digital pictures and videos which show the machining progress.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: PP
Application: Medical, Household, Electronics, Automotive, Agricultural, Plastic
Certification: ISO
Mold Material: S45c, S50c, P20, 718h, 738h, Nak80, S136, S136h
Mold Life Time: 300K Times
Product Material: ABS+PC, PP, PC, ABS, PA, HIPS, PVC, PE, PS, POM
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the role of temperature and pressure in injection molding quality control?

Temperature and pressure are two critical parameters in injection molding that significantly impact the quality control of the process. Let’s explore their roles in more detail:

Temperature:

The temperature in injection molding plays several important roles in ensuring quality control:

1. Material Flow and Fill:

The temperature of the molten plastic material affects its viscosity, or flowability. Higher temperatures reduce the material’s viscosity, allowing it to flow more easily into the mold cavities during the injection phase. Proper temperature control ensures optimal material flow and fill, preventing issues such as short shots, flow marks, or incomplete part filling. Temperature control also helps ensure consistent material properties and dimensional accuracy in the final parts.

2. Melting and Homogenization:

The temperature must be carefully controlled during the melting process to ensure complete melting and homogenization of the plastic material. Insufficient melting can result in unmelted particles or inconsistent material properties, leading to defects in the molded parts. Proper temperature control during the melting phase ensures uniform melting and mixing of additives, enhancing material homogeneity and the overall quality of the molded parts.

3. Cooling and Solidification:

After the molten plastic is injected into the mold, temperature control is crucial during the cooling and solidification phase. Proper cooling rates and uniform cooling help prevent issues such as warping, shrinkage, or part distortion. Controlling the temperature allows for consistent solidification throughout the part, ensuring dimensional stability and minimizing internal stresses. Temperature control also affects the part’s crystallinity and microstructure, which can impact its mechanical properties.

Pressure:

Pressure control is equally important in achieving quality control in injection molding:

1. Material Packing:

During the packing phase of injection molding, pressure is applied to the molten plastic material to compensate for shrinkage as it cools and solidifies. Proper pressure control ensures that the material is adequately packed into the mold cavities, minimizing voids, sinks, or part deformation. Insufficient packing pressure can lead to incomplete filling and poor part quality, while excessive pressure can cause excessive stress, part distortion, or flash.

2. Gate and Flow Control:

The pressure in injection molding influences the flow behavior of the material through the mold. The pressure at the gate, where the molten plastic enters the mold cavity, needs to be carefully controlled. The gate pressure affects the material’s flow rate, filling pattern, and packing efficiency. Optimal gate pressure ensures uniform flow and fill, preventing issues like flow lines, weld lines, or air traps that can compromise part quality.

3. Ejection and Part Release:

Pressure control is essential during the ejection phase to facilitate the easy removal of the molded part from the mold. Adequate ejection pressure helps overcome any adhesion or friction between the part and the mold surfaces, ensuring smooth and damage-free part release. Improper ejection pressure can result in part sticking, part deformation, or mold damage.

4. Process Monitoring and Feedback:

Monitoring and controlling the temperature and pressure parameters in real-time are crucial for quality control. Advanced injection molding machines are equipped with sensors and control systems that continuously monitor temperature and pressure. These systems provide feedback and allow for adjustments during the process to maintain optimum conditions and ensure consistent part quality.

Overall, temperature and pressure control in injection molding are vital for achieving quality control. Proper temperature control ensures optimal material flow, melting, homogenization, cooling, and solidification, while pressure control ensures proper material packing, gate and flow control, ejection, and part release. Monitoring and controlling these parameters throughout the injection molding process contribute to the production of high-quality parts with consistent dimensions, mechanical properties, and surface finish.

Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?

Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:

1. Material Selection:

The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.

2. Temperature Resistance:

In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.

3. Chemical Resistance:

In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.

4. UV Stability:

For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.

5. Mechanical Strength and Impact Resistance:

In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.

6. Compliance with Industry Standards:

When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.

7. Environmental Considerations:

In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.

8. Customization and Design Flexibility:

Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.

Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.

What industries and applications commonly utilize injection molded parts?

Injection molded parts find widespread use across various industries and applications due to their versatility, cost-effectiveness, and ability to meet specific design requirements. Here’s a detailed explanation of the industries and applications that commonly utilize injection molded parts:

1. Automotive Industry:

The automotive industry extensively relies on injection molded parts for both interior and exterior components. These parts include dashboards, door panels, bumpers, grilles, interior trim, seating components, electrical connectors, and various engine and transmission components. Injection molding enables the production of lightweight, durable, and aesthetically pleasing parts that meet the stringent requirements of the automotive industry.

2. Consumer Electronics:

Injection molded parts are prevalent in the consumer electronics industry. They are used in the manufacturing of components such as housings, buttons, bezels, connectors, and structural parts for smartphones, tablets, laptops, gaming consoles, televisions, cameras, and other electronic devices. Injection molding allows for the production of parts with precise dimensions, excellent surface finish, and the ability to integrate features like snap fits, hinges, and internal structures.

3. Medical and Healthcare:

The medical and healthcare industry extensively utilizes injection molded parts for a wide range of devices and equipment. These include components for medical devices, diagnostic equipment, surgical instruments, drug delivery systems, laboratory equipment, and disposable medical products. Injection molding offers the advantage of producing sterile, biocompatible, and precise parts with tight tolerances, ensuring safety and reliability in medical applications.

4. Packaging and Containers:

Injection molded parts are commonly used in the packaging and container industry. These parts include caps, closures, bottles, jars, tubs, trays, and various packaging components. Injection molding allows for the production of lightweight, durable, and visually appealing packaging solutions. The process enables the integration of features such as tamper-evident seals, hinges, and snap closures, contributing to the functionality and convenience of packaging products.

5. Aerospace and Defense:

The aerospace and defense industries utilize injection molded parts for a variety of applications. These include components for aircraft interiors, cockpit controls, avionics, missile systems, satellite components, and military equipment. Injection molding offers the advantage of producing lightweight, high-strength parts with complex geometries, meeting the stringent requirements of the aerospace and defense sectors.

6. Industrial Equipment:

Injection molded parts are widely used in industrial equipment for various applications. These include components for machinery, tools, pumps, valves, electrical enclosures, connectors, and fluid handling systems. Injection molding provides the ability to manufacture parts with excellent dimensional accuracy, durability, and resistance to chemicals, oils, and other harsh industrial environments.

7. Furniture and Appliances:

The furniture and appliance industries utilize injection molded parts for various components. These include handles, knobs, buttons, hinges, decorative elements, and structural parts for furniture, kitchen appliances, household appliances, and white goods. Injection molding enables the production of parts with aesthetic appeal, functional design, and the ability to withstand regular use and environmental conditions.

8. Toys and Recreational Products:

Injection molded parts are commonly found in the toy and recreational product industry. They are used in the manufacturing of plastic toys, games, puzzles, sporting goods, outdoor equipment, and playground components. Injection molding allows for the production of colorful, durable, and safe parts that meet the specific requirements of these products.

9. Electrical and Electronics:

Injection molded parts are widely used in the electrical and electronics industry. They are employed in the production of electrical connectors, switches, sockets, wiring harness components, enclosures, and other electrical and electronic devices. Injection molding offers the advantage of producing parts with excellent dimensional accuracy, electrical insulation properties, and the ability to integrate complex features.

10. Plumbing and Pipe Fittings:

The plumbing and pipe fittings industry relies on injection molded parts for various components. These include fittings, valves, connectors, couplings, and other plumbing system components. Injection molding provides the ability to manufacture parts with precise dimensions, chemical resistance, and robustness, ensuring leak-free connections and long-term performance.

In summary, injection molded parts are utilized in a wide range of industries and applications. The automotive, consumer electronics, medical and healthcare, packaging, aerospace and defense, industrial equipment, furniture and appliances, toys and recreational products, electrical and electronics, and plumbing industries commonly rely on injection molding for the production of high-quality, cost-effective, and functionally optimized parts.

China Standard High Precision Peek PSU PPS Injection Molded Plastic Products Custom Plastic Injection Molding Parts  China Standard High Precision Peek PSU PPS Injection Molded Plastic Products Custom Plastic Injection Molding Parts
editor by CX 2024-02-19

China Professional Custom Molded Plastic Polycarbonate Parts, OEM Made Per Drawing or Sample

Product Description

Item Description:Custom Molded Plastic Polycarbonate Parts,OEM Made per Drawing or Sample

Workshop View

Careful Working 

Example of What We Do

Company Introduction

Q: Are you a factory or trading company ?
A: We are a factory specializing in custom plastic injection molding parts,together with rubber parts and after-treatment of CHINAMFG such as painting,printing ,assembly etc .

Q:What info do you need if I want to get a quote for a custom plastic part ?
A: 3D drawing in IGS/STEP/X-T format is preferred .Otherwise  as long as other format can provide equivellent info ,it would be fine too ,such as CAD drawing with weight info provideded ,or samples sent to us for checking .
Also please state other related info such as what quantity you need,if there are any special requirements such as painting,printing,assembly etc .

Q:What material you can handle ?
A:We can make CHINAMFG in various kind of materials such as PC/PP/ABS/Nylon/PA6/PA66/TPE/PVC/PBT/Nylon with Glass Fiber/Polycarbonate with Glass Fiber/AS/PS/PMMA etc and subber parts in NBR/Silicone  etc .

Q:I have a custom plastic part to make ,I have the design but I am not familar with injection so I am not sure if this part may shrink or not working with injection,can you advise ?
A:YES,we have an engineering team who is not only familar with part design but also familar with injection feasiblity ,once we receive the drawing ,we will check the feasiblity for injection and potential problems in the design.For example,if the part is designed with unnecessary plastic which will not only add cost but also cause sink parts at the surface of the part,we will feedback you before proceeding .

Q:What colors can you do with my plastic part? 
A :We can make any color that is in Pantone and RAL color system .

Q:What’s your lead time for mold and for production ?
A:Usually we can send samples in 30-35 days from mold order . Production lead time is 2 to 8 weeks depending on order size .

Q:What’s the mold life gurantee ?
A:We provide lifetime gurantee .For example,usually a mold would start to age after like 500,000 shots ,but if quantity can reach this level ,we will make a new mold at our expense to keep the stable production going on . So you pay mold cost once and we will be responsible for all production from this model .

Q:Is mold our property after we pay it in full ?
A:Yes,mold is the customer’s property after the customer pays it in full .We only keep it well  in house to serve the customer’s production needs . The mold won’t be changed unless with customer’s permission .We will not produce from this mold for any third party unless we have the customer’s permission .

Q:What’s your delivery terms ?
A:It’s EXW price for air shipment and FOB HangZhou for sea shipment .HangZhou is our nearest port as we are located in HangZhou ,we can also coordinate to ship to other ports or locations if needed with negotiable price .

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS, PP, Polycarbonate, Nylon, PVC, POM etc
Application: Medical, Household, Electronics, Automotive, Agricultural
Item Name: Custom Injection Molding PC Plastic Parts
Transport Package: Multi Choices as Per Customer′s Needs
Specification: As per customer′s drawing or sample
Trademark: OEM
Customization:
Available

|

What is the impact of material selection on the performance and durability of injection molded parts?

The material selection for injection molded parts has a significant impact on their performance and durability. The choice of material influences various key factors, including mechanical properties, chemical resistance, thermal stability, dimensional stability, and overall part functionality. Here’s a detailed explanation of the impact of material selection on the performance and durability of injection molded parts:

Mechanical Properties:

The mechanical properties of the material directly affect the part’s strength, stiffness, impact resistance, and fatigue life. Different materials exhibit varying levels of tensile strength, flexural strength, modulus of elasticity, and elongation at break. The selection of a material with appropriate mechanical properties ensures that the injection molded part can withstand the applied forces, vibrations, and operational stresses without failure or deformation.

Chemical Resistance:

The material’s resistance to chemicals and solvents is crucial in applications where the part comes into contact with aggressive substances. Certain materials, such as engineering thermoplastics like ABS (Acrylonitrile Butadiene Styrene) or PEEK (Polyether Ether Ketone), exhibit excellent chemical resistance. Choosing a material with the appropriate chemical resistance ensures that the injection molded part maintains its integrity and functionality when exposed to specific chemicals or environments.

Thermal Stability:

The thermal stability of the material is essential in applications that involve exposure to high temperatures or thermal cycling. Different materials have varying melting points, glass transition temperatures, and heat deflection temperatures. Selecting a material with suitable thermal stability ensures that the injection molded part can withstand the anticipated temperature variations without dimensional changes, warping, or degradation of mechanical properties.

Dimensional Stability:

The dimensional stability of the material is critical in applications where precise tolerances and dimensional accuracy are required. Some materials, such as engineering thermoplastics or filled polymers, exhibit lower coefficients of thermal expansion, minimizing the part’s dimensional changes with temperature variations. Choosing a material with good dimensional stability helps ensure that the injection molded part maintains its shape, size, and critical dimensions over a wide range of operating temperatures.

Part Functionality:

The material selection directly impacts the functionality and performance of the injection molded part. Different materials offer unique properties that can be tailored to meet specific application requirements. For example, materials like polycarbonate (PC) or polypropylene (PP) offer excellent transparency, making them suitable for applications requiring optical clarity, while materials like polyamide (PA) or polyoxymethylene (POM) provide low friction and wear resistance, making them suitable for moving or sliding parts.

Cycle Time and Processability:

The material selection can also affect the cycle time and processability of injection molding. Different materials have different melt viscosities and flow characteristics, which influence the filling and cooling times during the molding process. Materials with good flow properties can fill complex mold geometries more easily, reducing the cycle time and improving productivity. It’s important to select a material that can be effectively processed using the available injection molding equipment and techniques.

Cost Considerations:

The material selection also impacts the overall cost of the injection molded part. Different materials have varying costs, and selecting the most suitable material involves considering factors such as material availability, tooling requirements, processing conditions, and the desired performance characteristics. Balancing the performance requirements with cost considerations is crucial in achieving an optimal material selection that meets the performance and durability requirements within the budget constraints.

Overall, material selection plays a critical role in determining the performance, durability, and functionality of injection molded parts. Careful consideration of mechanical properties, chemical resistance, thermal stability, dimensional stability, part functionality, cycle time, processability, and cost factors helps ensure that the chosen material meets the specific application requirements and delivers the desired performance and durability over the part’s intended service life.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Professional Custom Molded Plastic Polycarbonate Parts, OEM Made Per Drawing or Sample  China Professional Custom Molded Plastic Polycarbonate Parts, OEM Made Per Drawing or Sample
editor by CX 2024-02-18